# DECORBONISATION WHAT DOES IT REALLY MEAN? 26 NOVEMBER 2021



# **MEETING AGENDA**

WHY DOES DECARBONISATION MATTER
 WHAT ARE SCOPES 1,2 & 3
 WHAT DO SCOPES MEAN IN THE HIGHWAYS SECTOR
 THE RAPID PACE OF CHANGE
 WHAT IS HAPPENING AROUND THE WORLD
 WHAT IS ALREADY HAPPENING IN THE UK
 PRACTICAL NEXT STEPS





# WHY DOES DECARBONISATION MATTER?



# INTRODUCTIONS



**DAVID OGDEN** Operations Director



**PAUL ACOCK** National Technical Manager



**ANNE-LAURE LEVENT** Environment Director Colas SA



# EMMA MURRAY

Environment Manager

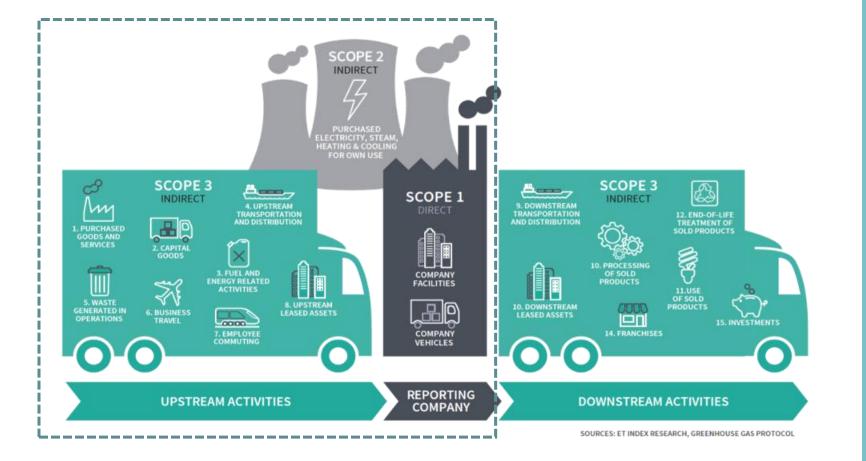


## DANIEL MORGAN

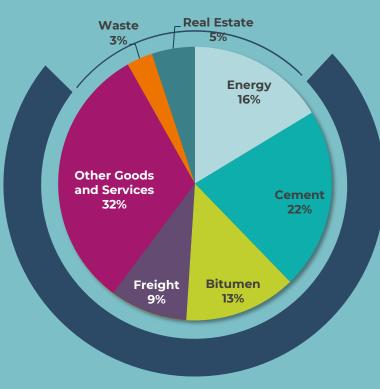
Quarrying & Asphalt Development Director



## **CLAUDE SIBAUD**

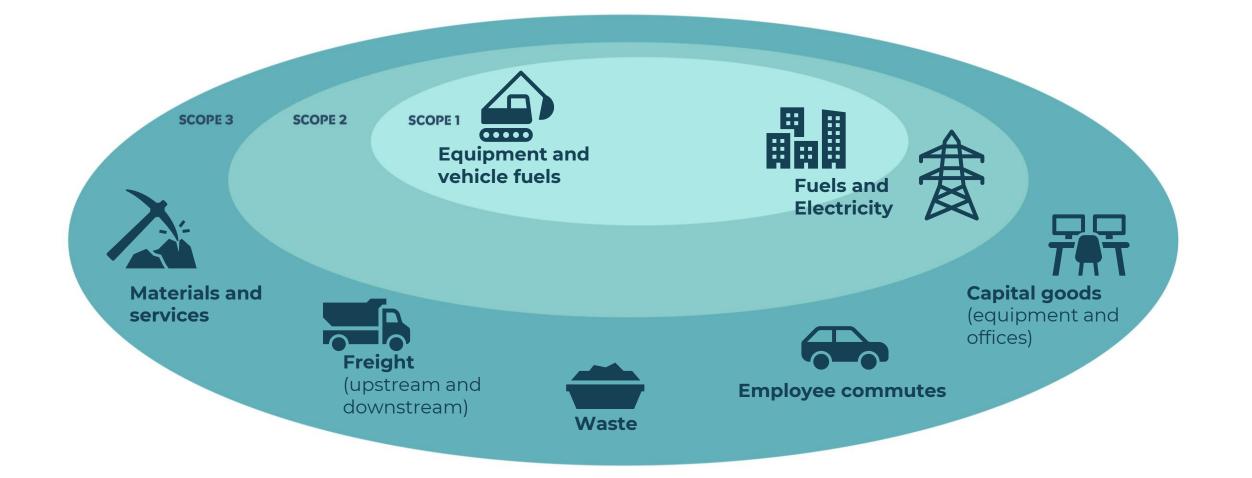

Technical Director Colas Western Europe




# WHAT ARE SCOPES 1,2 & 3? Anne-Laure Levent



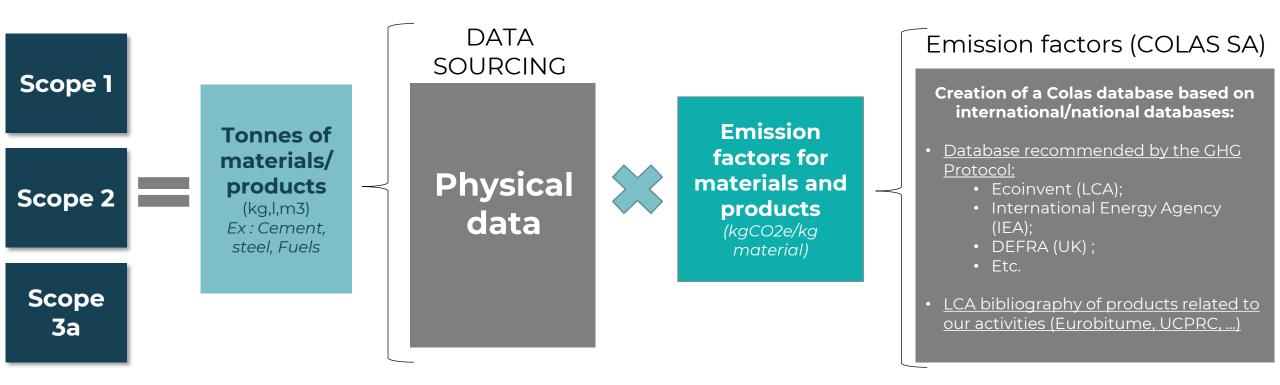
# BACKGROUND




### Scope 1, 2 and 3 Breakdown

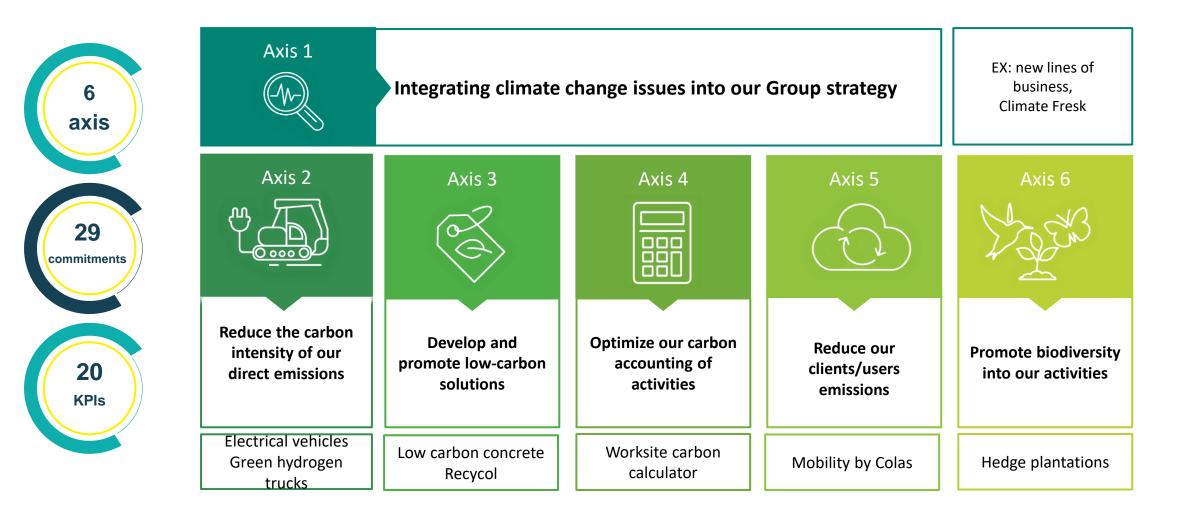


COLAS


# **IN OUR BUSINESS**



# WHAT DO SCOPES MEAN IN THE HIGHWAYS SECTOR? Anne-Laure LEVENT



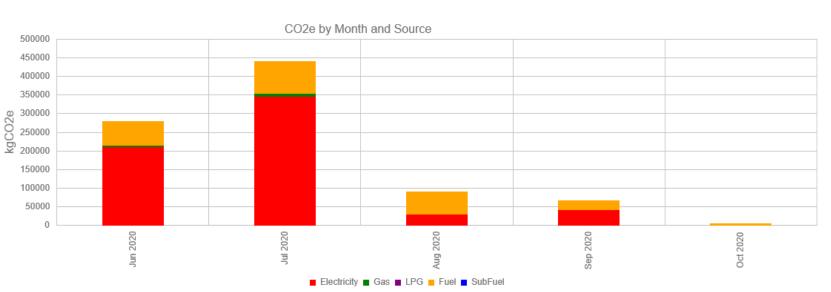

# **CARBON FOOTPRINT BASICS**





# LOW-CARBON AND BIODIVERSITY ROADMAP




# **TOOLS - SMARTWASTE**



> Used for managing and reducing resource use, waste outputs, impacts, time and costs

> Provides site and corporate data, reports and charts

- > Data that can be captured:
  - Energy
  - Waste
    - Site waste management plans
    - Waste duty of care information
  - Water
  - Materials
  - Transport
  - Biodiversity
  - Carbon
  - Cost





# **TOOLS - SUSTAINABILITY SUPPLY CHAIN SCHOOL**

# 🕥 Industry benchmark

See how your score compares to others in your industry, and across the School.

## School

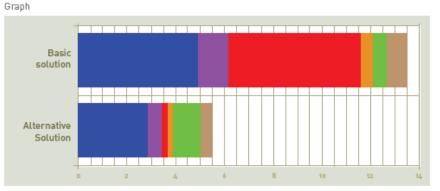




# WHAT IS ALREADY HAPPENING IN THE UK PAUL ACOCK



## **SEVE**




#### **RESULTS PROVIDED BY THE SEVE® SOFTWARE**

#### Example of an indicator:

Table of regults (in t on CO )

COMPARISON OF GHG EMISSIONS (in t eq CO2)



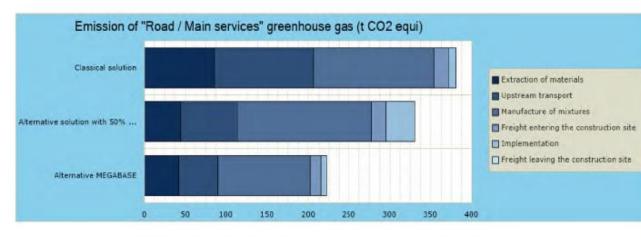
Material extraction Transport upstream of the manufacturing plant
 Manufacturing mixtures
 Transport towstream from plant to worksite
 Laying
 Transport outside the site

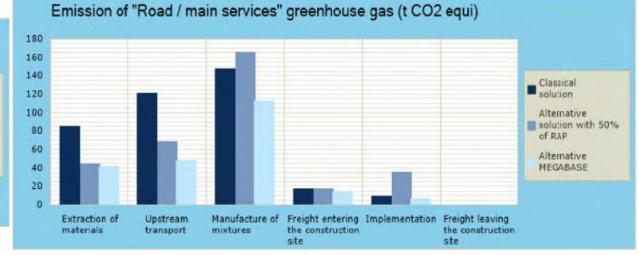
| Solution                | Material<br>extraction | Transport<br>upstream | Manifacturing<br>mixtures | Transport<br>into<br>the site | Laying | Transport<br>outside<br>the site | Total | ENVIRONMENTAL<br>BENEFIT |
|-------------------------|------------------------|-----------------------|---------------------------|-------------------------------|--------|----------------------------------|-------|--------------------------|
| Basic<br>solution       | 5,0                    | 1,2                   | 5,5                       | 0,5                           | 0,5    | 1                                | 13,7  | 10%                      |
| Alternative<br>solution | 2,9                    | 0,6                   | 0,2                       | 0,3                           | 1      | 0,5                              | 5,5   | 60%                      |

#### A DETAILED DOCUMENT, PDF FORMAT, PROVIDING:

- The second second
- Identification of the project, the company, the owner and the contractor.
- > General information about the software
- > Summary presentation of the solutions
- > Table of results (9 indicators)
- > Detailed presentation of solutions
- > List of used asphalt concrete formulas
- > List of recycled materials

COLAS


|     | ASPIIALI MIA                             |                |         |        |              |                  |         |         |           |                         |   |
|-----|------------------------------------------|----------------|---------|--------|--------------|------------------|---------|---------|-----------|-------------------------|---|
|     |                                          |                |         |        |              | Current cark     | oon foc | otprint | 32,5      | 1 218 750               |   |
|     | Reference qua                            |                |         |        | Target carbo | on foot          | print   | 27,2    | 1 018 728 |                         |   |
|     | <b>37,500,000</b><br>Tons of asphalt mix |                |         |        |              | Potential sa     | vings   |         | -16,4%    |                         |   |
|     |                                          |                | Current | Target | Variation    | Qty              | in      | npact   |           |                         |   |
|     |                                          |                |         |        |              |                  | unit    | total   |           |                         |   |
|     | Increase warm mix %                      | 30°C reduction | 15,6%   | 50,0%  | 34%          | 12 900 000       | 2,7     | 34 830  |           |                         |   |
|     | Control of warm mix<br>temperature       | 10°C reduction |         |        | 16%          | 5 850 000        | 0,9     | 5 265   |           |                         |   |
|     | Control of hot mix<br>temperature        | 10°C reduction |         |        | 50%          | 18 750 000       | 0,9     | 16 875  |           | ose efforts<br>epresent |   |
|     | Increase RAP                             | Same W%        | 16,0%   | 30,0%  | 14%          | 37 500 000       | 0,17    | 89 250  |           |                         |   |
|     | Reduce material moisture content         |                |         |        | -0.7%        | 37 500 000       | 1,96    | 53 802  |           | 5%                      |   |
|     |                                          |                |         |        |              | Total in         | npact   | 200 022 |           |                         |   |
|     |                                          |                |         | Γ      |              | CURREN           | T -     | TARGET  | ofthe     | reduction               |   |
|     |                                          |                |         |        | Aggregates   | 1% 509           |         |         |           | arget                   |   |
|     |                                          |                |         |        | Sand<br>RAP  | 3% 34°<br>5% 169 |         |         |           | -                       |   |
| COL | A5                                       |                |         |        |              | verage W% 2,3    |         | 1,6%    |           |                         | > |
|     |                                          |                |         |        |              |                  |         |         |           |                         |   |


# **ASPHALT MIX PRODUCTION**

# Kg CO2/t t CO2

## **CARBON SAVINGS FROM ALTERNATIVE OFFERS**

| (                                          |                       |                         | Emissions of greenhouse gases (t CO2 eq) |                            |                                 |                |                                |       |                      |  |  |  |
|--------------------------------------------|-----------------------|-------------------------|------------------------------------------|----------------------------|---------------------------------|----------------|--------------------------------|-------|----------------------|--|--|--|
| 0                                          | 02                    | Materials<br>extraction | Upstream<br>transportation               | Manufacture<br>of mixtures | Freight<br>entering the<br>site | Implementation | Freight<br>leaving the<br>site | Total | Comparison /<br>Base |  |  |  |
| Classical solution                         | Roads and<br>Networks | 85,0                    | 121,1                                    | 147,3                      | 18,0                            | 9,4            | 0,0                            | 380,8 |                      |  |  |  |
| Alternative<br>solution with<br>50% of RAP | Roads and<br>Networks | 44,5                    | 68,2                                     | 164,8                      | 18,0                            | 35,2           | 0,0                            | 330,7 | -13,1 %              |  |  |  |
| Alternative<br>MEGABASE                    | Roads and Networks    | 42,0                    | 47,6                                     | 112,2                      | 13,6                            | 6,7            | 0,0                            | 222,2 | -41,7 %              |  |  |  |





# **ALTERNATIVE – RECYCLED AGGREGATES**





Megabase® is a hot or warm mix, with high granularity (0/31.5 mm or 0/40 mm), typically for base layers under heavy stress. It's original formulation with a strong granular framework results in a high-performance, economical asphalt mix with low environmental impact, due to it's re-use of reclaimed rail ballast

#### Specificity: Coarse gradation

Optimized composition :

- ✓ Granular skeleton enhances load transfer between aggregates
- ✓ Mastic asphalt provide high density

High mechanical performance

Dedicated to areas with extreme loads ( port, intermodal platform, industrial site )



|    | Characteristics<br>(usual values)                                                                                    | MÉGABASE®<br>0/31.5 mm<br>0/40 mm |
|----|----------------------------------------------------------------------------------------------------------------------|-----------------------------------|
|    | Gyratory Shear Press Test<br>(NF EN 12 697-31)<br>Maximum voids at 120 gyrations, in %                               | 9.0                               |
|    | Duriez Test (NF EN 12 697-12)<br>Water sensitivity (immersion/Compression),<br>in %                                  | ≥75                               |
|    | Rutting Test (NF EN 12 697-22)<br>(Large Model, 60°C)<br>Ruts at 30 000 cycles, in %<br>Ruts at 100 000 cycles, in % | ≤ 6.5<br>≤ 7.5                    |
| í. | Complex Modulus Test<br>I5°C, IOHz (NF EN I2 697-62)<br>E , in MPa                                                   | ≥ II 000                          |
|    | Reversed Bending Fatigue Test<br>10°C, 15 Hz (NF EN 12 697-24)<br><sub>Eor</sub> in µstrain                          | ≥ 100                             |

| Basic solution | Alternative solution |
|----------------|----------------------|
| 360 mm AC 32   | 265 mm MEGABASE      |
| 50 MPa         | 50 MPa               |
| 265 mm AC 32   | 190 mm MEGABASE      |
| 50 MPa         | 50 MPa               |
| 200 mm AC 32   | 140 mm MEGABASE      |
| 50 MPa         | 50 MPa               |
| 165 mm AC 32   | 110 mm MEGABASE      |
| 50 MPa         | 50 MPa               |

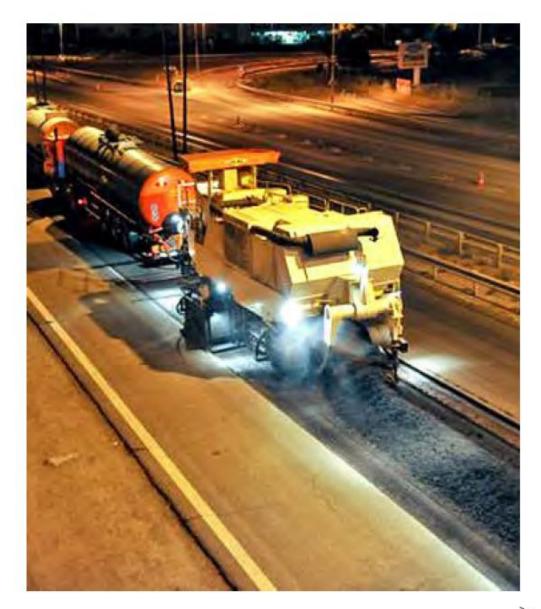


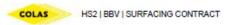
# **IN-SITU RECYCLING**

Novacol is a cold in place recycling technique that is used to renovate roadway layers to depths ranging from 5 to 20 cm.

The process includes planing the materials in place, metering and injecting any additional ingredients and mixing the final product that is applied as a base or binder course.

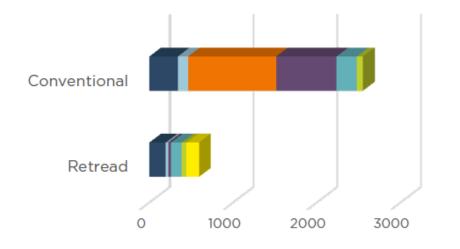
The layer will later be topped off with a surface dressing, cold micro surfacing or hot/cold mix asphalt. Novacol is a process that can be tailor-made to any project by varying the depth to which the surface is treated and by changing the type and percentage of binders and additional materials. Novacol is one of the most modern maintenance and renovation techniques available and can be used to encapsulate tarbound arisings in a cold asphalt emulsion, making the material inert for the future.


#### Yield:


5,000 to 10,000m<sup>2</sup> per day

#### Advantages:

- Inline compact units
- Reduced overall intervention
- Quick reopening to traffic

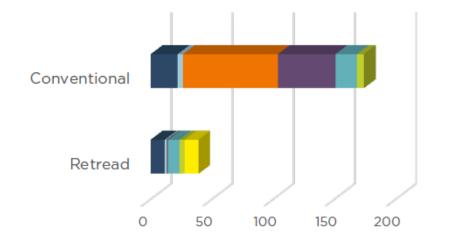

Savings: Materials because all in place materials are reused, Transport because process is in-situ and Energy because it is a cold technique





# **TOTAL ENERGY CONSUMPTION & GREEN HOUSE GAS EMISSIONS**

| Structure    | Binder | Aggregate | Upstream<br>Transport | Manufacture | Downstream<br>Transport | Laying | Retread<br>Equipment | Total   |
|--------------|--------|-----------|-----------------------|-------------|-------------------------|--------|----------------------|---------|
| Conventional | 339.5  | 122.9     | 1,053.8               | 721.8       | 239.8                   | 76.0   | -                    | 2,553.8 |
| Retread      | 195.9  | 31.5      | 2.0                   | 29.3        | 127.5                   | 54.4   | 153.0                | 593.6   |




- Binder
- Aggregates
- Upstream transport
- Manufacture
- Downstream transport
- Laying
- Retread Equipment

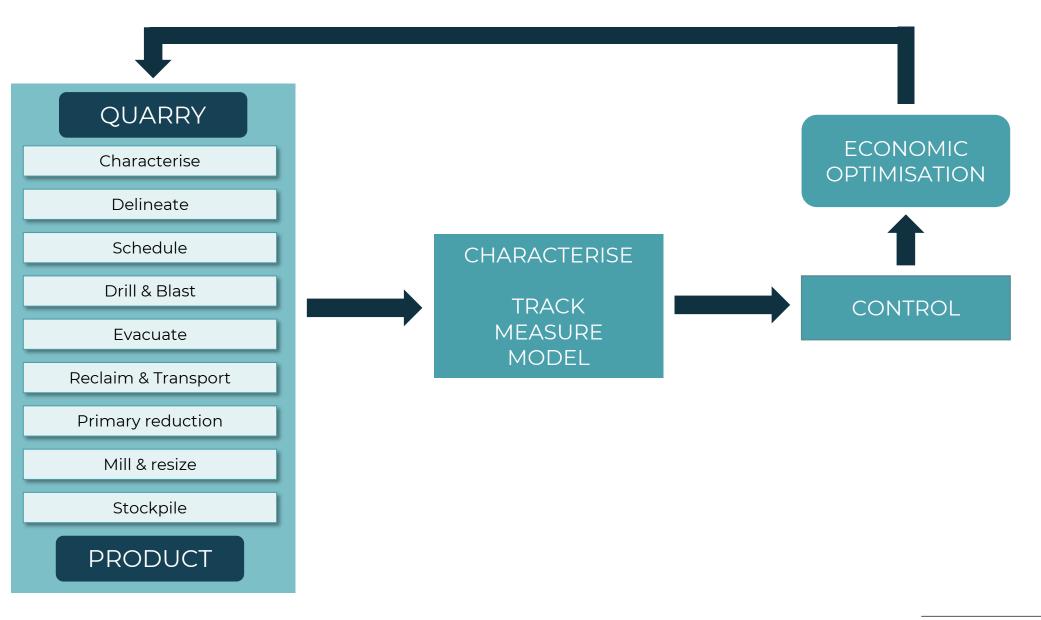
USING RETREAD, TOTAL ENERGY CONSUMPTION USED WAS A **76.76%** SAVING COMPARED TO CONVENTIONAL SURFACING

# **GHG EMISSION IN EQUIVALENT CO2 TONNES**

| Structure    | Binder | Aggregate | Upstream<br>Transport | Manufacture | Downstream<br>Transport | Laying | Retread<br>Equipment | Total |
|--------------|--------|-----------|-----------------------|-------------|-------------------------|--------|----------------------|-------|
| Conventional | 22.0   | 4.4       | 77.5                  | 46.9        | 17.6                    | 5.8    | -                    | 174.2 |
| Retread      | 11.5   | 1.6       | 0.2                   | 0.7         | 9.4                     | 4.2    | 11.5                 | 39.1  |

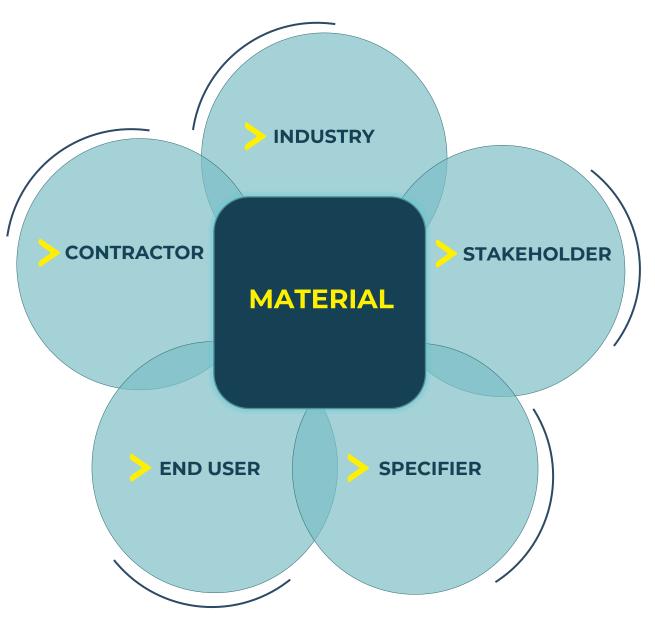


- Binder
- Aggregates
- Upstream transport
- Manufacture
- Downstream transport
- Laying
- Retread Equipment


USING RETREAD, TOTAL GREEN HOUSE GASES USED WAS A **77.37%** SAVING COMPARED TO CONVENTIONAL SURFACING



# THE RAPID PACE OF CHANGE DANIEL MORGAN




# MINE TO MILL STRATEGY




COLAS

# **MATERIAL SELECTION INFLUENCERS**





# **MINUS 14MM PRODUCTION SPLIT**



# **GRITSTONE WASTE STERILISING RESERVE**



COLAS

# **GRITSTONE WASTES CHOKE QUARRY SITES**

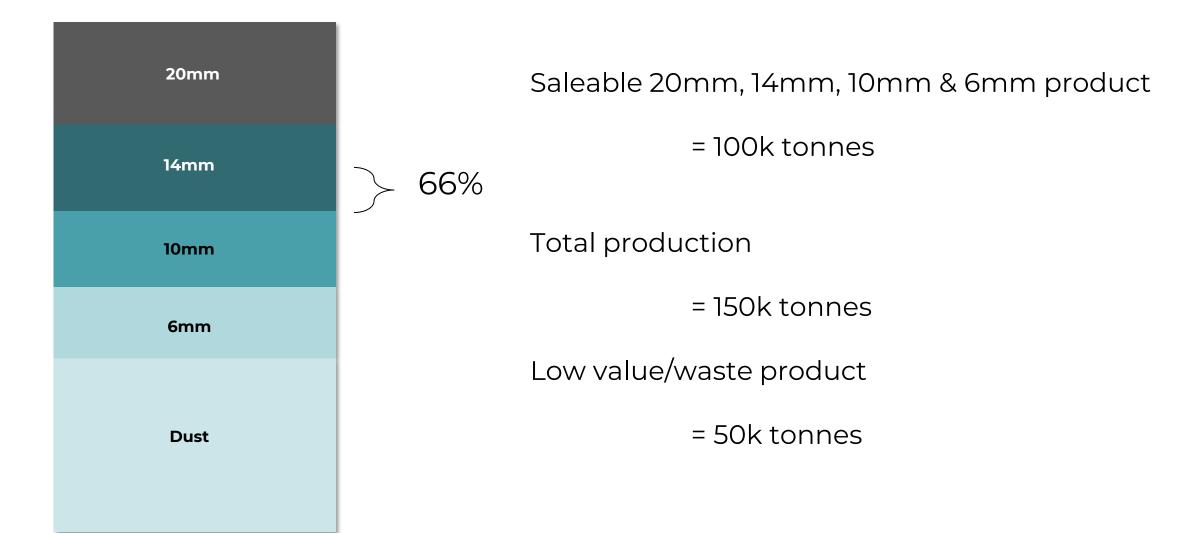




# **20MM STONE MASTIC ASPHALT**

- Same performance as 14mm Stone Mastic Asphalt
- > Texture typically 1.8mm
- > Laid 50-75mm<sup>+</sup> (performance proven up to 100mm)
- > Removes the need to insert a regulating layer
- > One pass operation, overall cost savings
- Strengthens the pavement
- >Aggregates, more readily available






# **6MM STONE MASTIC ASPHALT**

- Texture minimum 1.0mm
- Laid 20 40mm
- >Quiet, smooth ride
- Tough surface finish
- >Aesthetically pleasing
- > Aggregates, more readily available



# **MINUS 20MM PRODUCTION SPLIT**



# **CARBON REDUCTION PLAN**

#### Actions to Achieve Carbon Net Zero

Quick wins:

- >Texture minimum 1.0mm
- >Awareness and Education
- Carbon Data
- Switch the focus to carbon

reduction

- Innovations and Collaboration
- Increase green product ranges
- Increase efficiency of

manufacturing

- Generic Product EPDs
- Offset programmes







# WHAT IS HAPPENING AROUND THE WORLD CLAUDE SIBAUD





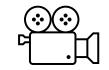
- VEGECOL 2: BIO-BASED BINDER

ECO 5 ASPHALT

URBAN HEAT ISLAND APPROACH



# VEGECOL 2 :


# **1.1 – Second generation COLAS Bio-based binder:**

- Developed by CST
  - a hot asphalt binder
    - Job trials in France for the last two years
  - A surface dressings binder: (hot or in emulsion)
    - Job trial in Denmark this year

# **1.2 – VEGECOL 2 emulsion surface dressing job trial**











# ASPHALT MORE SUSTAINABLE: ECO 5 ALTERNATIVE IN AUSTRALIA



Continuing to produce hot mix asphalt without using available technology is placing a burden on our:

# 1. People

Unnecessary exposing our workers to fumes

## 2. Environment

- Consuming natural resources
- Generating green house gasses during heating

## 3. Cost

Opportunities to reduce cost to both the contractor & customer

# 4. Quality

Variability in the quality effects in-service performance and life cycle costs







# How can we make asphalt more sustainable?

- Classical asphalt is produced from **non-renewable raw materials** and consumes energy in the **heating of bitumen and the aggregates**
- Asphalt can be made more sustainable by:
  - **1. Reusing waste** to replace virgin raw materials
  - 2. Reducing mixing and paving temperatures
  - **3. Improving performance** resulting in a longer service life with less maintenance and less disruption to traffic



# Types of waste which can be reused in asphalt?

- 1. Recycled Asphalt Pavement (RAP)
- 2. Recycled Crushed Glass (RCG)
- 3. Crumbed rubber (CR)
- 4. Slag
- 5. Fly ash
- 6. Plastic





# All sustainable DGA showed improved Fatigue and wheel tracking performances

|                                             | Test Method  | Mix type |         |        |         |
|---------------------------------------------|--------------|----------|---------|--------|---------|
| Test Property                               | Test Method  | AC20HD   | ECO20   | AC14HD | ECO14   |
| Fatigue at 200 mircostrain at 20°C, cycles  | AGPT/T274    | 108,000  | 360,000 | 131000 | 823,000 |
| Wheel tracking at 10,000 passes at 60°C, mm | AGPT/T231    | 3.1      | 2.6     | 2      | 1.5     |
| Resilient modulus at 25°C, MPa              | AS 2891.13.1 | 6,800    | 5,900   | 5600   | 4,900   |

# For every kilometer lane paved with ECO5:

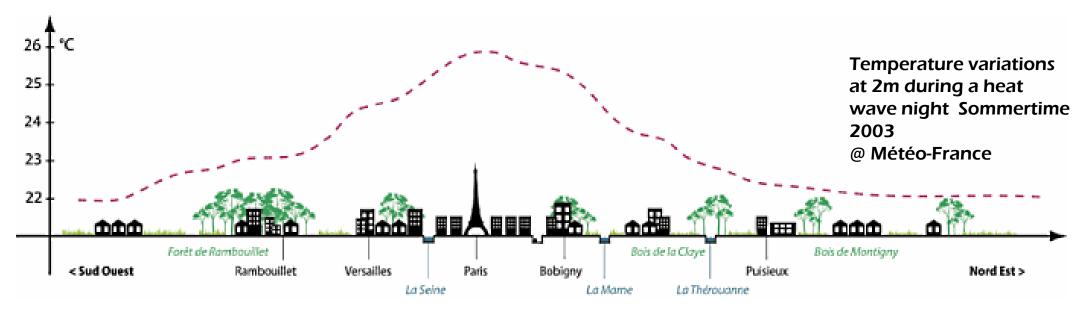
- 559 "End Of Life" tyres were recycled
- 56,966 "empty beer cans" were recycled
- 8t of virgin binder were preserved
- 94t of virgin aggregates were preserved
- Paving temperature = 90°C













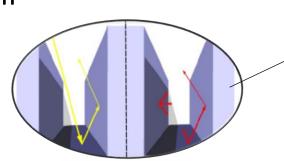

# APPROACH AND SUGGESTIONS



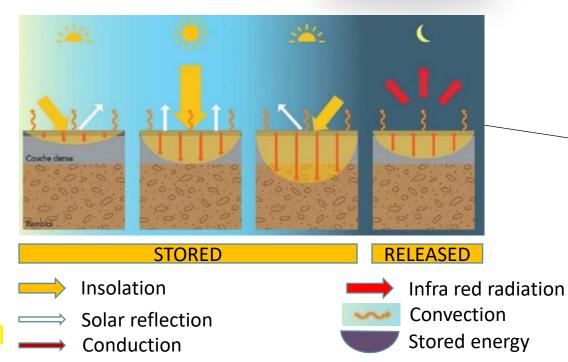




> Temperature increases in urban areas compare to neighboring rural ones



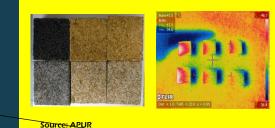




## Parameters impacting UHI

Radiative trapping: (canyon effect )

COLAS




Stored and released Solar energy cycle for (APUR, 2010)





#### **Urban Morphology**

Soils natures



Thermal & radiative performances



Source: APUR

Human activity concentration



UHI & Heat waves

**UHI** ΔT 3/4°C



UHI increases temperature variations during heat waves

 $\Delta T = 8 \text{ à } 10 \text{ °C}$  (UHI during heat wave night)



Climate change: Increase of Heat wave events frequency and intensity

# Conséquences

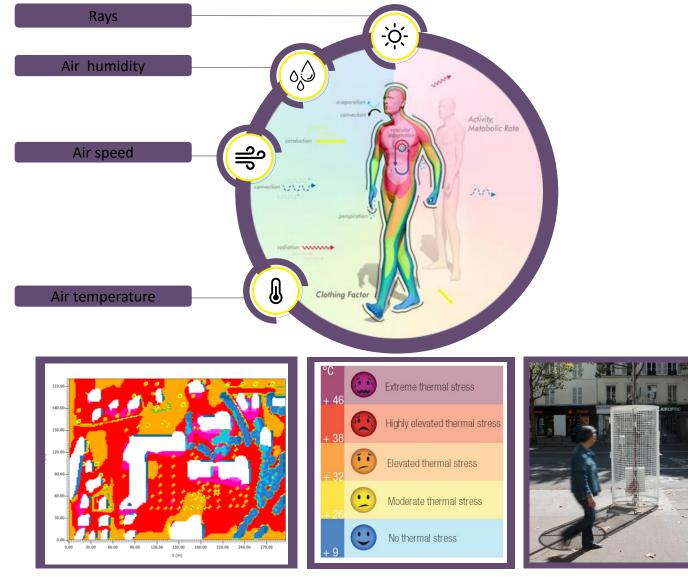
- ✓ Confort conditions degradations
- ✓ Sanitary / health risks increases
- ✓ Air conditionning

• • • •



# ANALYZE IN ORDER TO RECOMMEND

ANALYZE in order to RECOMMEND Take into consideration: site constraints, micro-Make the right suggestion climatic considerations, client usages and objectives 9 -<u>ò</u>(-Materials characterisation Digital simulations and Reduce heat absorbed by Create shade modeling mineral surfaces \_O <u>ک</u>ہ Enhance beneficial effects of Enhance beneficial effects of Observations, investigations On-site instruments storm water green spaces


Bring nature into the city



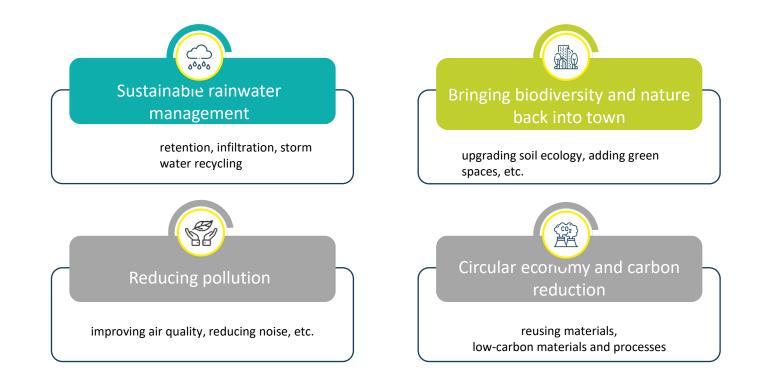


## **1. DEVELOP SOLUTIONS THAT PROMOTE COMFORT AND WELL-BEING**

- Optimising the thermal comfort of users in open urban spaces
- Qualifying user perception
   > Albedo
   > UTCI



Calculating UTCI with digital simulations and modeling


UTCI (Universal Thermal Climate Index)

Measuring the different parameters required for UTCI calculations (CLOWN project)





# 2. DEVELOP SOLUTIONS WITH MULTIPLE BENEFITS

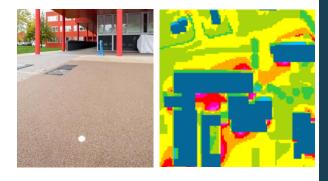


#### TOWARDS AN INTERDISCIPLINARY APPROACH

#### PRIOR ASSESSMENT

- Check the effectiveness of suggested solutions in advance
- > Calculate the potential gain in coolness

#### **OPERATIONAL ASSESSMENT**


 Assess the performance of the solution in real conditions

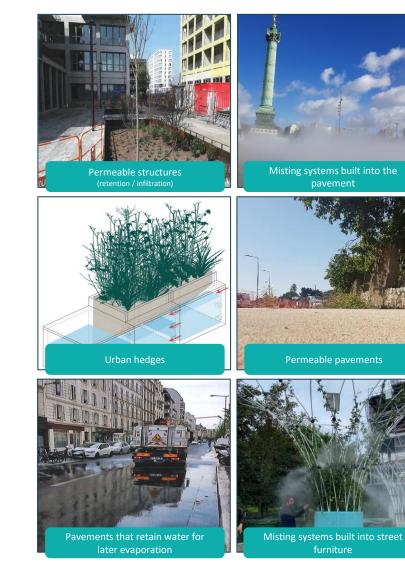
#### DIGITAL MODELISATION

 Optimisation with utilisation of materials that we know the ALBEDO










# SUSTAINABLE MANAGEMENT OF STORM WATER

- Mitigate soil sealing
- Store and re-use RW

#### WATER USAGE DURING A HEATWAVE

- Watering plants
- Moistening pavements
- Misting systems







### **GREEN SPACES**

#### PLANTS AND PAVEMENTS

# ADDING THE RIGHT PLANTS (TREES, PLANTS, GRASS)

- Improving the ecology of the soil and growing plants in the ground
- Growing plants in dense urban environments (little access to the ground)

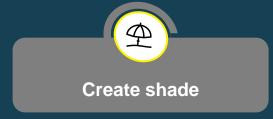








#### SHADE CREATED BY TREES




#### STREET FURNITURE









COLAS

# PRACTICAL NEXT STEPS

# **3 KEY ACTIONS**

 Identify carbon production across scopes 1,2 & 3 within your Local Authority and in your supply chain

 Local Authorities to develop 10 year carbon reduction road map - identify the activities they control, including key stakeholders and the activities they control

 Collaborate across the sector & Stakeholders, sharing best practice of carbon reduction progress and wider visibility of those challenges that are still out of reach, utilising the wider ADEPT community to pool resource to identify solutions to achieve Carbon Net Zero 2050 WE NEED TO WORK
COLLABORATIVELY
TO IMPLEMENT
DIFFERENT SOLUTIONS TO
DELIVER THE
DECARBONISATION
TARGETS

# Q&A

